Populations have the potential to grow until something stops them — something becomes
limiting. So the basic question about populations becomes, what might limit population
growth? And how? Fundamentally, population growth rate can change only through two
processes — changes in birth rate, or changes in death rate. (Note how this simplification
echoes the approach of MacArthur and Wilson in thinking about what might regulate the
number of species on an island.)
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As long as reproduction is unconstrained, rate of addition of individuals to population will be a
constant proportion of the population size (or the number of individuals available to
reproduce). If death rate does not change, this yields GEOMETRIC or EXPONENTIAL
growth. Resulting population trajectory is linear function of time IF plotted on a logarithmic
axis. Some terms: r = intrinsic rate increase (net number added per time unit per existing
individual) = b-d = birth rate (# born per time unit per existing individual) — death rate
(proportion dying per year). Remember that these are all RATES, so they must be thought of as
numbers per something — or numbers as a proportion of existing population. They might be
stated as (for example), “b = 2 births per 100 individuals per year” or “b=2%"; these mean the
same thing. SO, RATE OF GROWTH = dN/dt = population change per unit time = rN where
N is current number in population (NOTE: if you’ve had calculus, you’ll note that this is stated
as a derivative, which can be thought of as a rate, and you can do things like integrate it; if not,
just think of “dN/dt” as rate of growth in N — change in numbers per change in time). From
this equation, we can derive: N,= Nye" which predicts population at time t (t time units from
time 0) given a rate of growth , and the current population (time 0); e is a constant (root of
natural logs).
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If you look at exponential growth without the logarithmic transformation of the N
axis, it looks like the graph upper left; an accelerating curve — an explosive
positive-feedback process. Eventually, it will reach a point where the population
would very rapidly become infinitely large (or at least as large as you could

imagine...).
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A real case of sort-of-exponential growth -- CA sea lions following protection. On a linear
scale, exponential growth shows a concave-upward curve; initial small positive slopes rapidly
become steeper; populations have the potential to approach infinity in startlingly short times.
Various interesting properties: DOUBLING TIME is constant under exponential growth with
constant r. (So is time for any proportional change, but doubling time = approximately .70/r).
BUT THIS ASSUMES SEVERAL THINGS THAT ARE IMPLAUSIBLE; summarize
assumptions as “r never changes”. Now take that apart and think about constituent
assumptions — why r MIGHT change, or even why r would have to change? A more specific
list of assumptions of the exponential growth model might include things like: birth and death
rates are never affected by population size (N); all individuals in population have same
likelihood of living or dying...
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HUMAN HISTORY AND POPULATION
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Here, note that doubling time actually gets shorter for some periods (124 years from 1 to 2
billion; only 48 from 2 to 4 billion); that means r is INCREASING. Either b is going up or d

going down or both. Hypotheses?
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Note that the bubonic plague is one of the very few events in known history that
probably caused a significant drop in global population — but the dip lasted only

about a century...
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Some human demographers (or demographers of humans) suggest that there have
been points in human history where r increased (either b increased, or d decreased)
because of particular cultural transitions (agriculture, industrialization, etc.)
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But most often we expect that r must go down as numbers become large relative to available
resources, violating assumption that r is the same no matter the value of N. Populations can’t
become infinite because resources are finite; as populations get large, resources per individual
decline and, at some point, this must mean either less reproduction or higher mortality, or both.
Simple lab experiments can show this sort of negative feedback; here, in a poulation of flour
beetles grown on constant reesource supply in the lab. In a simple feedback system of this sort,
we might anticipate population leveling off (meaning b=d, so r=0) at a size where resources are
being consumed at same rate they’re being supplied. The value of N at this point is often
denoted as K or ‘carrying capacity’ (obviously, habitat specific...). One formula that produces
such behavior is the logistic formula, dN/dt = rN[(K-N)/K]. BUT this is STILL a simple model
with various assumptions that are not typically realistic. For example, it assumes that a)
negative feedback of increasing N on decreasing r is instantaneous (no time lags in the number-
resource-growth rate interaction); b) all individuals are equivalent; c) resource supply is
constant. And some others. Think about how growth dynamics might vary depending how
these assumptions are NOT met. “Neat” logistic growth curves are almost never seen in
nature.



A sort-of-logistic growth pattern in a sort-of-managed population -- sheep in Tasmania. But
even here, population fluctuates quite a bit with overshoots and crashes. Still, this population
has a clear density-dependent dynamic; it’s numeric behavior changes with population
size/density.
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And sometimes no detectable trend towards leveling off at a carrying capacity at all. This
graph shows population size for a kangaroo rats in an area of the Mojave Desert in southern
CA. This sort of pattern has been taken to suggest that environmental circumstances are so
dramatically fluctuating that populations are often controlled by occasional catastrophes
instead of number-resource feedbacks at all; ‘crises’ cause high mortality regardless of density,
and between crises populations tend to grow rapidly without constraint. Population regulatory
factors whose effect depends on numbers of the population are referred to as density-
dependent; those where chance of mortality is unrelated to numbers (as might be the case with
these kangaroo rats) are density-independent. Meteorite impacts and tidal waves would be
nearly purely density-independent in their effects; your chance of survival is not influenced by
N (the size of your population). Effects of food availability on birth or death rates would
generally be density-dependent.
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An extreme ‘boom and bust’ population history. Why might something like this happen?
Consider in terms of how assumptions of exponential and simple logistic models might be
violated. Most interpretations suggest that this is a result of a time-lag in the response of
population properties to resource limits; i.e., the effects of increasing population aren’t evident
immediately in form of changes in birth or death rates.
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Much attention has been focused on ways of testing for density-dependence in a range of
species and circumstances. Fundamentally, this requires showing that birth or death rates are a
function of population size or density — that birth rates decrease with increasing N at some
point, OR d increases. Here (with spotted salamanders of the genus Ambystoma), survival (the
inverse of death rate) DOES decline as population density (N) increases — but only above a
threshold density. There is generally an assumption that such changes are a result of
competition for resources among individuals of the population (‘intraspecific’ competition),
could there be other processes that would affect survival in this way?
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Interpret this graph in a similar way.
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Density-dependence can be a result of limited resources other than food; breeding birds defend
territories, and space is finite (focus on top graph, for song sparrows on Mandarte 1, British
Columbia; each point shows size of breeding female population and number of young fledged
per female for a particular year). Consider how results of competition for nesting territories
might differ from results of competition for food (hint: you either get a territory or you don’t; a
loser gets nothing. In competition for food, that might not be so true...) Note that, when song
sparrow nests are offered supplemental food even when number of breeders is high, number of
young fledged returns to numbers similar to nests in low-density years. What does this imply?

IN GENERAL, then, density dependent population effects can be related to competition for
some specific limiting resource. And IF there is density-dependence in population dynamics,
there is at least the potential for populations to be regulated by resource competition.
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Another natural experiment where evidence is consistent with density-dependence, for
warblers in forests of northeastern U.S.. Statistics review: the P=0.02 means that a pattern with
equal or stronger negative correlation between density and fledging rates has only a 0.02
chance of appearing by chance in a data-set of this size and structure if the null hypothesis of
no interaction were, in fact, true. Since this is a low probability, we would typically ‘reject’ the
null hypothesis — proceed as if the correlation were ‘real’. That does NOT mean we’ve shown
direct causality, however.
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More examples of density dependence.
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Studies demonstrating density-dependence are proportionally more frequent for birds and
mammals. This table tallies published studies showing negative feedback between N and r (the
“Neg” column) — that is, as N goes up r goes down. It’s an old compilation, but the pattern has

remained about the same.



The actual mechanisms for the negative feedback of resource competition on
population growth (either birth or death rates) differ depending on the nature of the
resource and the organisms, and the effects can be very different as a consequence.
Birds competing for nesting sites (like peregrine falcons, who nest on cliff ledges,
which can be scarce, and defend an area around their nest site from other falcons),
actively confront one another; this is often referred to as contest competition, and is
‘winner takes all’. Aside from the risk of energy, the winning bird may experience
little or no negative consequence, but the loser may fail to reproduce altogether.
Crowded aspen trees (left), however, are not sequestering and defending resources
(light, soil nutrients...) from each other; they’re simply ‘grabbing’ what they can
before another individual gets it. Some individuals may get more than others and
become ‘dominant’, but even the ‘losers’ get some resources (at least for a while).
This scramble competition is typically manifest in differences in vigor (and,
eventually, survival) among individuals. These models of competition are
sometimes referred to as inteference and exploitation.



Male elephant seals exhibit an extreme version of contest/interference competition
for mating opportunities; males maintain harems of up to several dozen females and
actively battle other males over control of the harem; fighting among males
frequently leads to severe injuries and even death.
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If you’re interested in some more sophisticated models and quantitative relationships, focus on
the next three pages...

‘Scramble’ competition can produce interesting patterns, like the ‘-3/2 power thinning law’ in
plants. Each green curve shows a single experimental pouplation over time since planting
(from “I” through time 1, 2, 3); where-ever you start, density-wise, as plants grow, they
eventually start dying off at a rate related to average size — and all experimental population
converge on the same line!
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And many species show similar pattern with same slope: slope = -3/2
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Another common trend in density-dependent processes: size distributions become
progressively ‘skewed’ with a very few LARGE individuals (‘winners’) and many small losers
(the ones who die in thinning). This is referred to as strong DOMINANCE. Recall pine trees in
the plantation; big trees get more light and so get bigger faster; winning a little means winning

even more.
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Simple models assume that all individuals in a population are identical — have same likelihood,
for example, of dying or giving birth. For organisms where AGE matters, this assumption is
generally inappropriate. AGE STRUCTURES describe how individuals in a population are
distributed among age groups. A group of individuals of similar age in a population is referred
to as a cohort. A population with an AGE STRUCTURE dominated by old trees might have
very different growth rate than one dominated by young trees. Note also that an age structure
like this one will necessarily change shape over time; it is unstable. This is obvious when
younger age classes are less abundant than older; as trees in older classes ‘age out’ they can’t

be replaced in equal abundance if younger classes are not there!
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Age structure for a scots pine population. Discounting the apparent rarity of trees < 20 years
old (maybe due to their not being large enough to core), this age structure might be
approximately stable; frequency of each progressively older age class is generally lower
(although this pattern isn’t perfect; there are some ‘bulges’ possibly reflecting large COHORTS
establishing approximately 100 and 200 years ago).



10,000 SQUARE METERS
&
—

NUMBCR  PER

;ﬂ&”.”&”,ﬂ.

1250 1650 ieso 14O N1963 A 0.
DATE OF ESTABLISHMENT

Fic. 10 Aer_rlaee distribution of living bristlocane pines an Sheep Mountain

=l
T

«

NUMBER OF TREES

I,

Fia. 11. Age-class data for bristlecone pines on Campito Mountain.

11 Llllll”lll

500 BC AD 300 1000
DATE OF ESTABLISHMENT

"

Bristle-cone age structures. Bristlecone pines can live several thousand years so, even
though new cohorts may establish only every century or two or three, an age structure like
that shown in bottom graph may be relatively stable. (we have a lot of age-structures for

tree populations;
few for long-lived animals. Why is that?)
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Feral sheep on St. Kilda Island — an isolated archipelago west of Scotland -- a classic study
showing density-dependence in the wild. Here: numbers fluctuate from year to year over a
wide range.
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But note the relationship, in this multi-year data-set, between number and probability
of survival from one year to next. Also note differences in survivorship curves for

different age groups and sexes (graphs B and C). Again, assumption that individuals are
demographically identical is violated. Figure B and C: Lambs have lower survivorship
(higher mortality) than adults, and lamb mortality is strongly density-dependent (not so

much for adults, although old females show increasing mortality at higher density.
Figures D and E: The North Atlantic Oscillation is a pattern of fluctuating weather.

Survival is much lower when it is at it’s ‘higher’ extreme...



Survivorship for Dall mountain sheep (Murie
1944)
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Another demographic/population property is the SURVIVORSHIP CURVE. In concept, this
represents the number surviving over time from an original COHORT of 1000 (sometimes
standardized to 100). Note exponential vertical axis. This is a typical mammalian survivorship
curve; it shows that, after early losses of lambs, ‘adolescent’ and young adult sheep survive
very well until about age 7, when numbers being to decline exponentially. Mortality in this
study is due mostly to predation.



Number surviving

1000

800

600

400

2%, Female Uta

200 -

1 1 1 1 1 1 1

[¢] 1 2 3 4 5 6 7 8
Age, years (Xantusia vigilis)

L 1 1 L 1 1 1 1 L 1 1 1 1 1 |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Age, years (Dall mountain sheep)

1 1 1 1 1 L ]

L
0o 3 9 15 21 27 33 39 45 51

Age, weeks (Uta stansburiana)

But some creatures show very different survivorship patterns with age. CONSIDER how shape
of age structure and shape of survivorship curve are related. An age structure MAY be stable
ONLY if it has similar shape to survivorship curve. THINK ABOUT IT....
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Some more survivorship curves. Demographers talk about three general types of
surivorship curves; type | (high survivorship until old age), Il (constant mortality
rate), and 111 (very high early mortality, but high survival once adulthood is
achieved). Of course all intermediate shapes occur, but these ‘models’ help think
about how different chief causes of mortality migth affect populations and how
different life-histories might play out. What sorts of organisms would you imagine

showing each type of curve? WHY?.
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Age Structure of Bowie Seamount Yelloweye
Rockfish, August/September 1980
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POPULATION BIOLOGY CONCEPTS have important practical applications: for
instance, the age structure of a harvested fish population can say a lot about whether

harvests are sustainable or not.
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Figure 1. Age structure of exploited and unexploited vellow perch populations in MNebraska Sandhill lakes
sampled m 1998 and 1999, Values for each age group represent the mean relative frequency with error bars
representing + | SE.
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In fact, effects of human exploitation on wild populations can be most evident in altered age
structures; a fisheries manager can use this information. If an ‘exploited’ population
exhibits younger cohorts that are smaller than older ones, that strongly indicates
usustainable over-exploitation...



