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Populations have the potential to grow until something stops them – something becomes 

limiting.  So the basic question about populations becomes, what might limit population 

growth?  And how?  Fundamentally, population growth rate can change only through two 

processes – changes in birth rate, or changes in death rate.  (Note how this simplification 

echoes the approach of MacArthur and Wilson in thinking about what might regulate the 

number of species on an island.)
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As long as reproduction is unconstrained, rate of addition of individuals to population will be a 

constant proportion of the population size (or the number of individuals available to 

reproduce). If death rate does not change, this yields GEOMETRIC or EXPONENTIAL 

growth.  Resulting population trajectory is linear function of time IF plotted on a logarithmic 

axis. Some terms: r = intrinsic rate increase (net number added per time unit per existing 

individual) = b-d = birth rate (# born per time unit per existing individual) – death rate 

(proportion dying per year). Remember that these are all RATES, so they must be thought of as 

numbers per something – or numbers as a proportion of existing population.  They might be 

stated as (for example), “b = 2 births per 100 individuals per year” or “b=2%”; these mean the 

same thing.  SO, RATE OF GROWTH = dN/dt = population change per unit time = rN where 

N is current number in population (NOTE: if you’ve had calculus, you’ll note that this is stated 

as a derivative, which can be thought of as a rate, and you can do things like integrate it; if not, 

just think of “dN/dt” as rate of growth  in N – change in numbers per change in time).  From 

this equation, we can derive: Nt = N0e
rt which predicts population at time t (t time units from 

time 0) given a rate of growth , and the current population (time 0); e is a constant (root of 

natural logs).  



If you look at exponential growth without the logarithmic transformation of the N 

axis, it looks like the graph upper left; an accelerating curve – an explosive 

positive-feedback process.  Eventually, it will reach a point where the population 

would very rapidly become infinitely large (or at least as large as you could 

imagine…).
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A real case of sort-of-exponential growth -- CA sea lions following protection. On a linear 

scale, exponential growth shows a concave-upward curve; initial small positive slopes rapidly 

become steeper; populations have the potential to approach infinity in startlingly short times. 

Various interesting properties: DOUBLING TIME is constant under exponential growth with 

constant r. (So is time for any proportional change, but doubling time = approximately .70/r).  

BUT THIS ASSUMES SEVERAL THINGS THAT ARE IMPLAUSIBLE; summarize 

assumptions as “r never changes”.  Now take that apart and think about constituent 

assumptions – why r MIGHT change, or even why r would have to change?  A more specific 

list of assumptions of the exponential growth model might include things like: birth and death 

rates are never affected by population size (N); all individuals in population have same 

likelihood of living or dying…
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Deer in MA
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Here, note that doubling time actually gets shorter for some periods (124 years from 1 to 2 

billion; only 48 from 2 to 4 billion); that means r is INCREASING.  Either b is going up or d 

going down or both. Hypotheses?
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Note that the bubonic plague is one of the very few events in known history that 

probably caused a significant drop in global population – but the dip lasted only

about  a century…



Some human demographers (or demographers of humans) suggest that there have 

been points in human history where r increased (either b increased, or d decreased) 

because of particular cultural transitions (agriculture, industrialization, etc.)
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But most often we expect that r must go down as numbers become large relative to available 

resources, violating assumption that r is the same no matter the value of N.  Populations can’t 

become infinite because resources are finite; as populations get large, resources per individual 

decline and, at some point, this must mean either less reproduction or higher mortality, or both.  

Simple lab experiments can show this sort of negative feedback; here, in a poulation of flour 

beetles grown on constant reesource supply in the lab.  In a simple feedback system of this sort, 

we might anticipate population leveling off (meaning b=d, so r=0) at a size where resources are 

being consumed at same rate they’re being supplied. The value of N at this point is often 

denoted as K or ‘carrying capacity’ (obviously, habitat specific…).  One formula that produces 

such behavior is the logistic formula, dN/dt = rN[(K-N)/K].  BUT this is STILL a simple model 

with various assumptions that are not typically realistic. For example, it assumes that a) 

negative feedback of increasing N on decreasing r is instantaneous (no time lags in the number-

resource-growth rate interaction); b) all individuals are equivalent; c) resource supply is 

constant. And some others.  Think about how growth dynamics might vary depending how 

these assumptions are NOT met.  “Neat” logistic growth curves are almost never seen in 

nature.
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A sort-of-logistic growth pattern in a sort-of-managed population -- sheep in Tasmania. But 

even here, population fluctuates quite a bit with overshoots and crashes.  Still, this population 

has a clear density-dependent dynamic; it’s numeric behavior changes with population 

size/density.
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And sometimes no detectable trend towards leveling off at a carrying capacity at all.  This 

graph shows population size for a kangaroo rats in an area of the Mojave Desert in southern 

CA.  This sort of pattern has been taken to suggest that environmental circumstances are so 

dramatically fluctuating that populations are often controlled by occasional catastrophes 

instead of number-resource feedbacks at all; ‘crises’ cause high mortality regardless of density, 

and between crises populations tend to grow rapidly without constraint.  Population regulatory 

factors whose effect depends on numbers of the population are referred to as density-

dependent; those where chance of mortality is unrelated to numbers (as might be the case with 

these kangaroo rats) are density-independent.  Meteorite impacts and tidal waves would be 

nearly purely density-independent in their effects; your chance of survival is not influenced by 

N (the size of your population).  Effects of food availability on birth or death rates would 

generally be density-dependent.
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An extreme ‘boom and bust’ population history.  Why might something like this happen?  

Consider in terms of how assumptions of exponential and simple logistic models might be 

violated.  Most interpretations suggest that this is a result of a time-lag in the response of 

population properties to resource limits; i.e., the effects of increasing population aren’t evident 

immediately in form of changes in birth or death rates.
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Much attention has been focused on ways of testing for density-dependence in a range of 

species and circumstances.  Fundamentally, this requires showing that birth or death rates are a 

function of population size or density – that birth rates decrease with increasing N at some 

point, OR d increases.  Here (with spotted salamanders of the genus Ambystoma), survival (the 

inverse of death rate) DOES decline as population density (N) increases – but only above a 

threshold density.  There is generally an assumption that such changes are a result of 

competition for resources among individuals of the population (‘intraspecific’ competition); 

could there be other processes that would affect survival in this way?
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Interpret this graph in a similar way.



15

Density-dependence can be a result of limited resources other than food; breeding birds defend 

territories, and space is finite (focus on top graph, for song sparrows on Mandarte I, British 

Columbia; each point shows size of breeding female population and number of young fledged 

per female for a particular year). Consider how results of competition for nesting territories 

might differ from results of competition for food (hint: you either get a territory or you don’t; a 

loser gets nothing.  In competition for food, that might not be so true…)  Note that, when song 

sparrow nests are offered supplemental food even when number of breeders is high, number of 

young fledged returns to numbers similar to nests in low-density years. What does this imply?

IN GENERAL, then, density dependent population effects can be related to competition for 

some specific limiting resource.  And IF there is density-dependence in population dynamics, 

there is at least the potential for populations to be regulated by resource competition.
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Another natural experiment where evidence is consistent with density-dependence, for 

warblers in forests of northeastern U.S.. Statistics review: the P=0.02 means that a pattern with 

equal or stronger negative correlation between density and fledging rates has only a 0.02 

chance of appearing by chance in a data-set of this size and structure if the null hypothesis of 

no interaction were, in fact, true. Since this is a low probability, we would typically ‘reject’ the 

null hypothesis – proceed as if the correlation were ‘real’.  That does NOT mean we’ve shown 

direct causality, however.



More examples of density dependence.
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Studies demonstrating density-dependence are proportionally more frequent for birds and 

mammals.  This table tallies published studies showing negative feedback between N and r (the 

“Neg” column) – that is, as N goes up r goes down.  It’s an old compilation, but the pattern has 

remained about the same.

ALL       WILD      NEG       NOT HARVEST
INVERTS         5          0 0            0
INSECTS        17        10            1            1
FISH                 7         7             4            0
BIRDS             23        23          14          12
MAMMALS      19        19          14           3



The actual mechanisms for the negative feedback of resource competition on 

population growth (either birth or death rates) differ depending on the nature of the 

resource and the organisms, and the effects can be very different as a consequence.  

Birds competing for nesting sites (like peregrine falcons, who nest on cliff ledges, 

which can be scarce, and defend an area around their nest site from other falcons), 

actively confront one another; this is often referred to as contest competition, and is 

‘winner takes all’.  Aside from the risk of energy, the winning bird may experience 

little or no negative consequence, but the loser may fail to reproduce altogether.  

Crowded aspen trees (left), however, are not sequestering and defending resources 

(light, soil nutrients…) from each other; they’re simply ‘grabbing’ what they can 

before another individual gets it.  Some individuals may get more than others and 

become ‘dominant’, but even the ‘losers’ get some resources (at least for a while).  

This  scramble competition is typically manifest in differences in vigor (and, 

eventually, survival) among individuals.  These models of competition are 

sometimes referred to as inteference and exploitation.
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Male elephant seals exhibit an extreme version of contest/interference competition 

for mating opportunities; males maintain harems of up to several dozen females and 

actively battle other males over control of the harem; fighting among males 

frequently leads to severe injuries and even death.
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If you’re interested in some more sophisticated models and quantitative relationships, focus on 

the next three pages…

‘Scramble’ competition can produce interesting patterns, like the ‘-3/2 power thinning law’ in 

plants.  Each green curve shows a single experimental pouplation over time since planting 

(from “I” through time 1, 2, 3); where-ever you start, density-wise, as plants grow, they 

eventually start dying off at a rate related to average size – and all experimental population 

converge on the same line!
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And many species show similar pattern with same slope: slope = -3/2
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Another common trend in density-dependent processes: size distributions become 

progressively ‘skewed’ with a very few LARGE individuals (‘winners’) and many small losers 

(the ones who die in thinning). This is referred to as strong DOMINANCE.  Recall pine trees in 

the plantation; big trees get more light and so get bigger faster; winning a little means winning 

even more.
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Simple models assume that all individuals in a population are identical – have same likelihood, 

for example, of dying or giving birth.  For organisms where AGE matters, this assumption is 

generally inappropriate.   AGE STRUCTURES  describe how individuals in a population are 

distributed among age groups.  A group of individuals of similar age in a population is referred 

to as a cohort. A population with an AGE STRUCTURE dominated by old trees might have 

very different growth rate than one dominated by young trees.  Note also that an age structure 

like this one will necessarily change shape over time; it is unstable.  This is obvious when 

younger age classes are less abundant than older; as trees in older classes ‘age out’ they can’t 

be replaced in equal abundance if younger classes are not there!
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Age structure for a scots pine population.  Discounting the apparent rarity of trees < 20 years 

old (maybe due to their not being large enough to core), this age structure might be 

approximately stable; frequency of each progressively older age class is generally lower 

(although this pattern isn’t perfect; there are some ‘bulges’ possibly reflecting large COHORTS 

establishing approximately 100 and 200 years ago).
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Bristle-cone age structures.  Bristlecone pines can live several thousand years so, even 

though new cohorts may establish only every century or two or three, an age structure like 

that shown in bottom graph may be relatively stable.  (we have a lot of age-structures for 

tree populations; 

few for long-lived animals. Why is that?)
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Feral sheep on St. Kilda Island – an isolated archipelago west of Scotland -- a classic study 

showing density-dependence in the wild. Here: numbers fluctuate from year to year over a 

wide range.
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But note the relationship, in this multi-year data-set, between number and probability 

of survival from one year to next.  Also note differences in survivorship curves for 

different age groups and sexes (graphs B and C). Again, assumption that individuals are 

demographically identical is violated. Figure B and C: Lambs have lower survivorship 

(higher mortality) than adults, and lamb mortality is strongly density-dependent (not so 

much for adults, although old females show increasing mortality at higher density.  

Figures D and E: The North Atlantic Oscillation is a pattern of fluctuating weather.  

Survival is much lower when it is at it’s ‘higher’ extreme…
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Another demographic/population property is the SURVIVORSHIP CURVE.  In concept, this 

represents the number surviving over time from an original COHORT of 1000 (sometimes 

standardized to 100).  Note exponential vertical axis.  This is a typical mammalian survivorship 

curve; it shows that, after early losses of lambs, ‘adolescent’ and young adult sheep survive 

very well until about age 7, when numbers being to decline exponentially.  Mortality in this 

study is due mostly to predation.
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But some creatures show very different survivorship patterns with age.  CONSIDER how shape 

of age structure and shape of survivorship curve are related.  An age structure MAY be stable 

ONLY if it has similar shape to survivorship curve.  THINK ABOUT IT….



Some more survivorship curves.  Demographers talk about three general types of 

surivorship curves; type I (high survivorship until old age), II (constant mortality 

rate), and III (very high early mortality, but high survival once adulthood is 

achieved).  Of course all intermediate shapes occur, but these ‘models’ help think 

about how different chief causes of mortality migth affect populations and how 

different life-histories might play out.  What sorts of organisms would you imagine 

showing each type of curve?  WHY?.  
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POPULATION BIOLOGY CONCEPTS have important practical applications:  for 

instance, the age structure of a harvested fish population can say a lot about whether 

harvests are sustainable or not.
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In fact, effects of human exploitation on wild populations can be most evident in altered age 

structures; a fisheries manager can use this information.  If an ‘exploited’ population 

exhibits younger cohorts that are smaller than older ones, that strongly indicates 

usustainable over-exploitation…


